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A robust and recyclable ruthenium catalyst immobilised on polyethylene glycol
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A highly robust and recyclable Hoveyda-Grubbs’ second generation ruthenium type catalyst immobilised
on polyethylene glycol is conveniently prepared from Grubbs’ second generation catalyst. The catalyst
performs ring-closing metathesis of various di-and tri-substituted olefins efficiently in dichloromethane
in air.
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A number of well-defined and functional group-tolerant metath-
esiscatalystsarenowknown,forexample,therutheniumalkylidenes
1a–c and the more recent 2a,b1,2 (Fig. 1) The unique bidentate nature
of the isopropoxy ether ligand of 2 results in enhanced stability in air
and an ability to recycle the catalyst by chromatography on silica
gel.2c Immobilisedandsupportedrutheniumcatalystshavealsobeen
reported that allow ease of removal of ruthenium by-products and
catalyst recycling.3 A number of catalysts of this type are known,
but few display good reactivity and recyclability.4

Early reports on such supported catalysts employed heteroge-
neous polystyrene (PS) as the support.5 However, while these cat-
alysts can be recycled, they generally display poor catalytic activity
due to limited access to the reactive site of the catalyst.5 Catalysts
based on soluble supports show improved activity with enhanced
rates of diffusion relative to the heterogeneous polymers.6–9 These
catalysts can be recovered by precipitation or aqueous extraction
following metathesis.6,7 For example, the soluble-PEG-supported
catalysts 3 and 4 exhibit good ring-closing metathesis (RCM) activ-
ity in dichloromethane under homogenous conditions and can be
recycled to some degree.8,9 Significantly, the NHC-immobilised cat-
alysts 5 and 6 show some activity under aqueous conditions.6a,b

Here we report the synthesis of 7 (an air-stable Hoveyda-Grub-
bs’ second generation type catalyst) and its use in RCM reactions of
various di- and tri-substituted dienes to give five-, six- and seven-
membered cyclic olefins (see Table 2).

Ruthenium catalyst 7 is suitable for reaction in reagent grade
dichloromethane10 without drying or degassing and can be recy-
cled by precipitation or aqueous extraction.

The synthesis of 7 is shown in Scheme 1. Chloromethylation of 9
(itself prepared from commercially available 8) gave the chloro-
methyl benzaldehyde 10, which was reacted under standard Wittig
ll rights reserved.
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conditions11 to give styrene 11. Polyethylene glycol monomethyl
ether (Mn = 2000) was deprotonated with sodium hydride and 11
was added to this anion to give the PEG-tethered ligand 12
PEGMe : MeOO n

Figure 1. Ruthenium catalysts for olefin metathesis.



Table 1
Recyclability studies of catalyst 7 in RCM of diene 13

Ts
N

Ts
N

CH2Cl2,
reflux13 14

10 mol% 7

Cycle Conversiona (%)

1 >98
2 95
3 95
4 90
5 89

a Determined by analysis of the crude 1H NMR spectrum.

Table 2
Ring-closing metathesis of various di- and tri-substituted dienes

Entry Substratereference Product

1
Tsb
N

1316

Ts
N

1416

2 CO2EtEtO2C

1518

CO2EtEtO2C

1618

3 Ts
N

1716

Ts
N

1816

4 Ts
N

1916

Ts
N

2019

5 Ts
N

2116

Ts
N

2218

Ts
N

2320

6 Ts
N

2421

Ts
N

2521

7

N
O

Ph

2622

O
O Ph

N

O

Ph

2722

O

O Ph

a Determined by analysis of the crude 1H NMR spectrum.
b 4-Toluenesulfonyl.
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(Scheme 1). An attempted preparation of 12, by reaction of 10 di-
rectly with polyethylene glycol monomethyl ether, followed by
Wittig olefination was problematic due to difficulties in removal
of triphenylphosphine at this late stage. Treatment of 12 with
Grubbs’ second generation catalyst (1b), in the presence of CuCl
to scavenge tricyclohexylphosphine, gave the PEG-immobilised
catalyst 7 as a green solid in 67% yield after purification by chroma-
tography on alumina and precipitation with ether. The structure of
7 was confirmed by 1H and 13C NMR, and MALDI-TOF mass spec-
trometry. In particular, the MALDI-TOF mass spectrum revealed
an intense peak for the [MH+]Na ion at 2662 Da, which is consis-
tent with the 45 ethylene oxides (CH2CH2O) associated with PEG.
The 1H NMR spectrum (CDCl3) showed a characteristic resonance
for the benzylidene proton at 16.5 ppm.12
Catalyst Time (h) Conversiona (%)

7 0.5 >98
1b 0.5 >98

7 0.5 >98
1b 0.5 >98

7 0.5 >98
1b 0.5 >98

7 0.5 95
1b 0.5 98

7 0.5 98
1b 0.5 98 (1:1)

7 0.5 98
1b 0.5 98

7 2 94
1b 4 85
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Scheme 1. Synthesis of catalyst 7 from 2-hydroxybenzaldehyde 8.
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The ability of 7 to catalyse RCM of N-tosyldiallylamine 13 (a
metathesis benchmark substrate)13 was then investigated, and
the results are summarised in Table 1 for five repeated cycles. N-
Tosyldiallylamine 13 was heated under reflux with 10 mol % of cat-
alyst 7 for 1 h in non-degassed dichloromethane, with exposure to
air. Ether was added to precipitate the catalyst and the filtrate was
concentrated and analysed by 1H NMR spectroscopy which showed
complete conversion to 14.14 The filtered catalyst was reused in a
further RCM reaction of 13 to give a 95% conversion to 14. This se-
quence was repeated three more times without significant loss of
activity (Table 1).

A comparative study of our new catalyst 7 and Grubbs’ second
generation catalyst 1b was carried out with an extended set of di-
and tri-substituted dienes (13, 15, 17, 19, 21, 24 and 26), and the
results are given in Table 2. In all cases, the reaction involved heat-
ing the substrate under reflux with 10 mol % of catalyst, with the
extent of conversion to the five-, six- and seven-membered cyclic
olefins 14, 16, 18, 20, 22, 23, 25 and 27 being determined by 1H
NMR analysis of the crude product (see Table 2). Catalyst 7 was re-
moved prior to analysis by simple aqueous extraction.14 Reactions
with catalyst 1b were carried out using dry degassed dichloro-
methane under inert conditions, while those with 7 were carried
out with exposure to air.15

Reactions of 1316 under these conditions with either catalyst led
to quantitative conversion to 14.17 The dienes, 15,18 17,16 1916 and
2421 similarly led to quantitative (or near quantitative) conver-
sions to the corresponding five- six- and seven-membered alkenes
(Table 2, entries 2–4 and 6). In the case of diene 21,18 significant
isomerisation of the product alkene was observed with catalyst
1b to give 2218 and 2320 in a ratio of 1:1 (Table 2, entry 5). In this
case the crude product was purified by chromatography on silica
gel (using 5% ethyl acetate in hexane) to give 67% of 2320 and
33% of 22.18 Some isomerisation was apparent on silica.

Treatment of 2622 with 1b led to 85% conversion to 2722 after an
extended reaction for 4 h under degassed conditions, while the
reaction in the presence of 7 led to 94% conversion after only 2 h
(Table 2, entry 7). The product 27 was isolated in yields of 89%
(from reaction with 7) and 80% (from reaction with 1b), respec-
tively, after chromatography.
In summary, we have reported a new polyethylene glycol-sup-
ported ruthenium catalyst 7 that performs RCM reactions in air
using reagent grade dichloromethane. The catalyst is conveniently
prepared by reaction of Grubbs’ second generation catalyst with
PEG-bound olefin 12. It is stable in air for several months and per-
forms well in RCM of a variety of dienes. The catalyst can be recy-
cled up to five times and is easily recovered on precipitation with
ether or by aqueous extraction. Catalyst 7 represents a useful addi-
tion to the growing list of supported metathesis catalysts and work
is under progress to extend its activity to aqueous conditions.
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